Detecting Relative Anomaly
نویسندگان
چکیده
System states that are anomalous from the perspective of a domain expert occur frequently in some anomaly detection problems. The performance of commonly used unsupervised anomaly detection methods may suffer in that setting, because they use frequency as a proxy for anomaly. We propose a novel concept for anomaly detection, called relative anomaly detection. It is tailored to be robust towards anomalies that occur frequently, by taking into account their location relative to the most typical observations. The approaches we develop are computationally feasible even for large data sets, and they allow real-time detection. We illustrate using data sets of potential scraping attempts and Wi-Fi channel utilization, both from Google, Inc.
منابع مشابه
Moving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملSeparation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image
The application of anomaly detection has been given a special place among the different processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...
متن کاملMoving Dispersion Method for Statistical Anomaly Detection in Intrusion Detection Systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملMining Abnormal Patterns from Heterogeneous Time-Series with Irrelevant Features for Fault Event Detection
We address the issue of detecting fault events in multivariate time series. We suppose the following realistic situation: A) the features to which multivariate time series correspond are heterogeneous; B) relative to a large number of normal examples, only a small number of examples of fault events are available in advance; and C) many features irrelevant to fault events are included. In such a...
متن کاملAutomatic Interval Naming Using Relative Pitch
Relative pitch perception is the identification of the relationship between two successive pitches without identifying the pitches themselves. Absolute pitch perception is the identification of the pitch of a single note without relating it to another note. To date, most pitch algorithms have concentrated on detecting the absolute pitch of a signal. This paper presents an approach for relative ...
متن کامل